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The computation of the energy eigenvalues of the one-dimensional time-indepen-
dent Schrödinger equation is considered. Exponentially fitted and trigonometrically fit-
ted symplectic integrators are obtained, by modification of the first and second order
Yoshida symplectic methods. Numerical results are obtained for the one-dimensional
harmonic oscillator and Morse potential.
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1. Introduction

The time-independent Schrödinger equation is one of the basic equations
of quantum mechanics. Its solutions are required in the studies of atomic and
molecular structure and spectra, molecular dynamics and quantum chemistry. In
the literature many numerical methods have been developed to solve the time-
independent Schrödinger equation.
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The one-dimensional time-independent Schrödinger equation may be writ-
ten in the form

−1
2

d2ψ

dx2
+ V (x)ψ = Eψ, x ∈ [a, b], (1)

where E is the energy eigenvalue, V (x) the potential, and ψ(x) the wave func-
tion. Equation (1) can be rewritten in the form

d2ψ

dx2
= −B(x)ψ,

where B(x) = 2(E − V (x)), or

φ′ = −B(x)ψ,
ψ ′ = φ.

Liu et al. [2] have shown that the one-dimensional Schrödinger equation (1)
has a symplectic structure. Therefore, the symplectic schemes are the reason-
able numerical algorithms for solving the Schrödinger equation. In their paper
[2] applied symplectic algorithms developed by Yoshida [6] in order to find the
energy eigenvalues of equation (1) with boundary conditions of the type

y(a) = y(b) = 0.

In this work we develop two exponentially fitted methods based on Yoshida’s
first and second order symplectic methods.

2. Exponentially and trigonometrically fitted symplectic methods

Given an interval [a, b] and a partition with N points

x0 = a, xn = x0 + nh, n = 1, 2, . . . , N.

An one-step discrete scheme(
φn+1

ψn+1

)
= Mn

(
φn
ψn

)
, Mn =

(
αn βn
γn δn

)

is symplectic if MT JM = J , where

J =
(

0 1
−1 0

)

2.1. The first order method

The first order Yoshida type method is
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φn+1 = φn − chBnψn,

ψn+1 = ψn + dhφn+1, (2)

with c = d = 1.
We can also write this method as a two step method

φn+1 − 2ψn + ψn−1 = −βh2Bnψn,

where β = c d.
In order to construct the exponentially fitted method we require method (2)

to integrate exactly the exponential function ψ(x) = e±wx we have the following
expression for β

β = ewh + e−wh − 2
w2h2

.

For small values of w the above formula are subject to heavy cancellations. In
this case the following Taylor series expansions must be used

β = 1 + v2

12
+ v4

360
+ v6

20160
+ v8

1814400
+ v10

239500800
+O(h12),

where v = wh.
Similarly we obtain the trigonometrically fitted method, requiring method

(2) to integrate exactly the function exp(±iwx), i = √−1 we have the following
expression for β

β = 2
w2h2

(1 − cos(wh))

or

β = 1 − v2

12
+ v4

360
− v6

20160
+ v8

1814400
− v10

239500800
+O(h12).

It can be seen that when w → 0 the above methods become the Yoshida’s
first order method β = 1.

2.2. The second order method

The two stage Yoshida type symplectic method is of the following form

p1 = φn − c1hBψn,

q1 = ψn + d1hp1,

φn+1 = p1 − c2hBq1,

ψn+1 = q1 + d2hφn+1 (3)

this method is of second order for
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c1 = 0, c2 = 1, d1 = d2 = 1
2

(4)

Requiring the method (3) to integrate exactly the exponential function
ψ(x) = e±wx we have the following equations

ewh = 1 + (c1 + c2)wh + c2d1(wh)
2 + c1c2d1(wh)

3,

ewh = 1 + d1wh + d2whewh + c1d1(wh)
2,

e−wh = 1 − (c1 + c2)wh + c2d1(wh)
2 − c1c2d1(wh)

3,

e−wh = 1 − d1wh − d2whe−wh + c1d1(wh)
2.

This system is solved for c1, c2, d1 and d2 and the following coefficients are
obtained for the exponentially fitted method.

c1 = 0, c2 = e2wh − 1
2whewh

, d1 = d2 = ewh − 1
wh(ewh + 1)

.

The following Taylor series expansions can be used in order to avoid can-
cellations for small w.

c2 = 1 + v2

6
+ v4

120
+ v6

5040
+ v8

362880
+ v10

39916800
+O(h12),

d1 = d2 = 1
2

− v2

24
+ v4

240
− 17v6

40320
+ 31v8

725760
− 691v10

159667200
+O(h12).

Similarly we require method (3) to integrate exactly the function exp(±iwx),
i = √−1 we have the following expression for the coefficients of the trigonomet-
rically fitted method.

c1 = 0, c2 = sin (wh)
wh

, d1 = d2 = 1
wh

tan
(
wh

2

)
.

The following Taylor series expansions can be used in order to avoid can-
cellations for small w.

c2 = 1 − v2

6
+ v4

120
− v6

5040
+ v8

362880
− v10

39916800
+O(h12),

d1 = d2 = 1
2

+ v2

24
+ v4

240
+ 17v6

40320
+ 31v8

725760
+ 691v10

159667200
+O(h12).

It can be seen that when w → 0 the above methods become the second
order Yoshida method (4).
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3. Numerical results

We consider the one-dimensional eigenvalue problem with boundary
conditions

ψ(a) = 0, ψ(b) = 0

We use the shooting scheme in the implementation of the above methods. The
shooting method converts the boundary value problem into an initial value
problem where the boundary value at the end point b is transformed into an ini-
tial value y ′(a), the results are independent of y ′(a) if y ′(a) �= 0. The eigenvalue
E is a parameter in the computation, the value of E that makes y(b) = 0 is the
eigenvalue computed.

3.1. The harmonic oscillator

The potential of the one dimensional harmonic oscillator is

V (x) = 1
2
kx2,

we consider k = 1. The exact eigenvalues are given by

En = n+ 1
2
, n = 0, 1, 2, . . .

In order to compute the eigenvalues by the shooting method we started with the
interval [−5.5, 5.5] and we increased the interval as we computed higher state ei-
genvalues up to [−8.5, 8.5].

In the next table we compare the second order method of Liu (Meth1) and
the modified trigonometrically fitted method developed here (Meth2). Results are
given for steps h = 0.1 and h = 0.01. In columns 3–6 we give the absolute errors
multiplied by 1000 (see also figure 1).

We see that Meth1 with step h = 0.1 fails to produce two correct decimal
digits from E4, for h = 0.01 the absolute error increase rapidly as we compute
higher state eigenvalues up to 10−3. Above E14 Meth2 with step h = 0.1 gives
less absolute error than Meth1 with step h = 0.01. With step h = 0.01 Meth2
gives absolute errors less than 10−5.

3.2. Morse potential

We now consider Morse potential

V (x) = D [exp(−2αx) − 2 exp(−αx)]
with D = 12 and α = 0.204124.
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Figure 1. The harmonic oscillator.

The exact eigenvalues are given by

En = −12 +
(
n+ 1

2

)
− 1

48

(
n+ 1

2

)2

.

In order to compute the eigenvalues by the shooting method we used the inter-
val [−13.5, 13.5] up to the 11th state eigenvalue and the interval [−13.5, 43.5] for
higher state eigenvalues (table 1).

Table 1
The harmonic oscillator.

Meth1 Meth2 Meth1 Meth2
Exact h = 0.1 h = 0.1 h = 0.01 h = 0.01

E0 0.5 0.313 0.247 0.004 0.003
E1 1.5 1.565 0.394 0.016 0.004
E2 2.5 4.070 0.498 0.041 0.005
E3 3.5 7.831 0.582 0.079 0.006
E4 4.5 12.850 0.650 0.128 0.007
E5 5.5 19.128 0.712 0.189 0.006
E6 6.5 26.673 0.768 0.266 0.008
E7 7.5 35.482 0.820 0.354 0.009
E8 8.5 45.559 0.867 0.454 0.009
E9 9.5 56.905 0.911 0.566 0.009
E10 10.5 69.522 0.945 0.688 0.006
E11 11.5 83.422 0.986 0.829 0.010
E12 12.5 1.021 0.979 0.011
E13 13.5 1.056 1.141 0.011
E14 14.5 1.091 1.316 0.011
E15 15.5 1.124 1.503 0.011
E16 16.5 1.151 1.699 0.007
E17 17.5 1.184 1.916 0.012
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In table 2 we compare the second order method of Liu (Meth1) and the
modified trigonometrically fitted method developed here (Meth2). Results are
given for steps h = 0.1 and h = 0.01. In columns 3–6 we give the absolute errors
multiplied by 1000 (see also figure 2).

Table 2
Morse potential.

Meth1 Meth2 Meth1 Meth2
Exact h = 0.1 h = 0.1 h = 0.01 h = 0.01

E0 11.505208 0.305 0.251 0.004 0.004
E1 10.546875 1.413 0.371 0.016 0.005
E2 9.630208 3.405 0.437 0.036 0.007
E3 8.755208 6.056 0.478 0.063 0.008
E4 7.921875 9.158 0.499 0.094 0.008
E5 7.130208 12.523 0.507 0.129 0.010
E6 6.380208 15.977 0.507 0.163 0.009
E7 5.671875 19.362 0.498 0.197 0.009
E8 5.005208 22.541 0.484 0.229 0.009
E9 4.380208 25.390 0.465 0.257 0.009
E10 3.796875 27.804 0.443 0.280 0.009
E11 3.255208 29.694 0.448 0.298 0.008
E12 2.755208 30.992 0.396 0.311 0.009
E13 2.296875 31.639 0.360 0.317 0.008
E14 1.880208 31.600 0.339 0.316 0.008
E15 1.505208 30.856 0.295 0.308 0.008
E16 1.171875 29.403 0.280 0.293 0.007
E17 0.880208 27.257 0.225 0.271 0.006
E18 0.630208 24.450 0.205 0.243 0.006
E19 0.421875 21.031 0.156 0.208 0.005
E20 0.255208 17.070 0.130 0.168 0.004
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Figure 2. Morse potential.
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We see that for Meth1 for both steps the errors increase rapidly as we com-
pute higher state eigenvalues. While stable results are produced by Meth2 the
absolute error does not increase further than 10−5 for h = 0.01, and 0.5 × 10−3

for h = 0.1. For higher state eigenvalues Meth2 with step h = 0.1 gives less abso-
lute error than Meth1 with step h = 0.01.
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